WHAT IS WINDLASS?
Nov 19, 2025



A windlass is a vital deck machinery system used on ships to hoist, lower, and control the anchor and its chain with precision and safety. Typically powered by either electric or hydraulic motors, the windlass relies on a gypsy or wildcat wheel, which is specially designed to fit the shape of chain links, ensuring a firm grip during operation. This setup allows the crew to manage heavy anchoring equipment efficiently, even in challenging sea conditions.

Purpose

• To lower or “let go” the anchor safely, ensuring it descends at a controlled speed
• To heave up the anchor and its chain smoothly when departing or shifting position
• To maintain proper control of tension and speed throughout anchoring operations, preventing damage to the equipment or sudden strain on the vessel

Overall, the windlass plays a crucial role in securing a ship at anchor and ensuring safe, reliable maneuvering during critical anchoring procedures.

ADVERTISEMENT

RELATED EDUCATIONAL VIEW MORE...

Tropical cyclone categories

Tropical cyclone categories are used to classify storms based on their maximum sustained wind speed, the level of damage expected at landfall, and the height of storm surge they can produce. This standardized system helps meteorologists, mariners, and coastal communities quickly understand a cyclone’s intensity and the potential risks it poses. As the category number increases, the storm becomes more powerful, more destructive, and more dangerous to life, property, and maritime operations. ‣Category 1 cyclones have wind speeds of 74–95 mph and typically cause minimal damage. Some roof damage, broken branches, and minor coastal flooding may occur. Storm surges range from 4–5 feet. ‣Category 2 cyclones produce winds of 96–110 mph and cause moderate damage. Trees may be uprooted, windows broken, and power outages are common. Storm surges reach 6–8 feet. ‣Category 3 cyclones are major storms with winds of 111–129 mph. Extensive damage occurs, including structural damage to buildings and serious coastal flooding from 9–12 feet of storm surge.

Methods of Heat Transfer

/ Methods of Heat Transfer Understanding how heat moves is essential in science, engineering, and everyday applications especially in marine and industrial environments. Heat transfer occurs in three fundamental ways: conduction, convection, and radiation. Each method explains how thermal energy flows from one object or area to another. / Conduction is the transfer of heat through direct contact. When two objects touch, heat moves from the hotter object to the cooler one as particles collide and transfer energy. This process is common in solids, such as metal cookware heating up when placed on a stove.

Fuel Oil Properties

Fuel Oil Properties Fuel oil properties define the physical and chemical characteristics that determine how fuel behaves during storage, handling, combustion, and engine operation. In marine engineering, understanding these properties is essential to ensure safe operations, efficient fuel consumption, regulatory compliance, and long-term reliability of ship machinery. Purpose •The purpose of identifying and monitoring fuel oil properties is to: •Ensure safe storage, handling, and combustion of fuel •Protect engines and fuel systems from damage and excessive wear •Maintain optimal engine performance and efficiency •Comply with international environmental and emission regulations •Reduce operational risks such as fires, blockages, and corrosion

SOLAS CONVENTION: LATEST UPDATES

The International Convention for the Safety of Life at Sea (SOLAS) is recognized as the cornerstone of international maritime safety law. Originally adopted in 1914 following the tragic loss of the RMS Titanic, it has since been revised several times to keep pace with technological and operational advances in shipping. The 1974 SOLAS Convention, which came into force in 1980, introduced the “tacit acceptance” procedure, allowing amendments to automatically enter into force on a specified date unless objected to by a certain number of member states. This system ensures SOLAS remains a dynamic, living instrument capable of adapting quickly to new safety concerns. SOLAS establishes uniform minimum safety standards in the design, construction, equipment, and operation of merchant ships. All ships engaged in international voyages must comply, subject to inspections and certification by their flag state administrations, as well as verification by port state control officers when calling at foreign ports. The Convention also incorporates mandatory codes such as the ISM Code, ISPS Code, Polar Code, and HSC Code, ensuring comprehensive safety measures. The treaty has grown into a holistic framework addressing every aspect of ship safety, including fire prevention, life-saving appliances, safe navigation, carriage of cargoes, maritime security, and the safe management of shipping companies. Its reach extends from traditional merchant vessels to modern high-speed craft, bulk carriers, and ships operating in polar waters. The most updated structure of the SOLAS Convention includes the following chapters: Chapter I – General Provisions: Survey, certification, and enforcement. Chapter II-1 – Construction – Structure, Subdivision, and Stability, Machinery and Electrical Installations: Integrity of ship structure and machinery. Chapter II-2 – Fire Protection, Fire Detection, and Fire Extinction: Fire safety systems, training, and response. Chapter III – Life-Saving Appliances and Arrangements: Lifeboats, life rafts, survival suits, and muster arrangements. Chapter IV – Radiocommunications: GMDSS and distress alert systems. Chapter V – Safety of Navigation: Voyage planning, navigational warnings, and mandatory equipment like ECDIS and AIS. Chapter VI – Carriage of Cargoes: Loading, stowage, and securing of general cargoes. Chapter VII – Carriage of Dangerous Goods: IMDG Code compliance and hazardous cargo provisions. Chapter VIII – Nuclear Ships: Special safety arrangements for nuclear-powered ships. Chapter IX – Management for the Safe Operation of Ships (ISM Code): Safety management systems and company responsibility. Chapter X – Safety Measures for High-Speed Craft (HSC Code): Special rules for fast passenger and cargo craft. Chapter XI-1 – Special Measures to Enhance Maritime Safety: Continuous surveys, ship identification numbers, and inspection regimes. Chapter XI-2 – Special Measures to Enhance Maritime Security (ISPS Code): Ship and port facility security levels, drills, and plans. Chapter XII – Additional Safety Measures for Bulk Carriers: Structural reinforcements and safety precautions. Chapter XIII – Verification of Compliance: IMO audits of member states’ compliance. Chapter XIV – Safety Measures for Ships Operating in Polar Waters (Polar Code): Safety, environmental, and crew training standards in polar regions. Chapter XV – Safety Measures for Ships Carrying Industrial Personnel: Safe design and operation of vessels carrying offshore or industrial workers. Chapter XVI – Safety Measures for the Carriage of More than 12 Industrial Personnel on International Voyages: Latest addition, providing detailed regulations for industrial transport. In 2024, several significant amendments entered into force, further strengthening the safety framework. Updates to Chapter II-1 on construction and stability enhanced watertight integrity and introduced refined methods for damage stability calculations. These improvements, particularly in Parts B-1, B-2, and B-4, applied to new vessels and modernized long-standing requirements. Fire safety also received attention, with amendments to the Fire Safety Systems (FSS) Code easing requirements for individual detector isolators, balancing safety with practical shipboard application. Changes to the Life-Saving Appliances (LSA) Code clarified standards for launching appliances, including rescue boats and free-fall lifeboats, while providing exemptions from certain dynamic testing requirements. At the same time, the International Code of Safety for Ships using Gases or Other Low-flashpoint Fuels (IGF Code) was updated, reinforcing provisions on fire protection, fuel distribution, and fixed extinguishing arrangements. These changes ensured that ships using LNG and other alternative fuels maintained higher safety margins. Other 2024 amendments addressed mooring equipment, requiring de

MARINO PH - The largest maritime community.
9_20250904_175149_0008.png
10_20250904_175149_0009.png
12_20250904_175150_0011.png
19_20250904_175150_0018.png
20_20250904_175150_0019.png
23_20250904_175150_0022.png
26_20250904_175150_0025.png
32_20250904_175150_0031.png
5_20250904_175149_0004.png
6_20250904_175149_0005.png
8_20250904_175149_0007.png
11_20250904_175149_0010.png
13_20250904_175150_0012.png
14_20250904_175150_0013.png
15_20250904_175150_0014.png
16_20250904_175150_0015.png
17_20250904_175150_0016.png
18_20250904_175150_0017.png
21_20250904_175150_0020.png
22_20250904_175150_0021.png
24_20250904_175150_0023.png
25_20250904_175150_0024.png
27_20250904_175150_0026.png
28_20250904_175150_0027.png
29_20250904_175150_0028.png
30_20250904_175150_0029.png
31_20250904_175150_0030.png
33_20250904_175150_0032.png

Marino PH Logo

MARINO PH

The largest maritime community in the Philippines
© 2025 All Rights Reserved.


CONTACT INFORMATION

+63 (02) 8743 5810
customercare@marinoph.com
Agoncillo Building, 1580 Taft Ave, Ermita, Manila City, 1000 Metro Manila